D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Exercise Sheet 3	FS 2025

3.1. Existence of closed geodesics. Let (M, g) be a compact Riemannian manifold and $c_0: S^1 \to M$ a continuous closed curve. Show that in the family of all continuous and piece-wise C^1 curves $c: S^1 \to M$ which are homotopic to c_0 , there is a shortest one. Prove that this is a geodesic.

3.2. Homogeneous Riemannian manifolds. Let (M, g) be a homogeneous Riemannian manifold, i.e. the isometry group of M acts transitively on M. Prove that M is geodesically complete.

3.3. Metric and Riemannian isometries. Let (M, g) and $(\overline{M}, \overline{g})$ be two connected Riemannian manifolds with induced distance functions d and \overline{d} , respectively. Further, let $f: (M, d) \to (\overline{M}, \overline{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p' \in M$ we have $\overline{d}(f(p), f(p')) = d(p, p')$.

- (a) Prove that for every geodesic γ in M, $\bar{\gamma} := f \circ \gamma$ is a geodesic in N.
- (b) Let $p \in M$. Define $F: TM_p \to T\overline{M}_{f(p)}$ with

$$F(X) := \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(t),$$

where γ_X is the geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}(0) = X$. Show that F is surjective and satisfies F(cX) = cF(X) for all $X \in TM_p$ and $c \in \mathbb{R}$.

- (c) Conclude that F is an isometry by proving ||F(X)|| = ||X||.
- (d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.
- (e) Prove that f is a diffeomorphism for which $f^*\bar{g} = g$ holds.